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Abstract. Green function and unitary transformation techniques are applied to study pola- 
riton formation in a molecular crystal placed in an intense external monochromatic light 
field. Using the exact tri-linear computation relations for Frenkel exciton operators, the 
energy of polaritons is shown to be dependent on exciton density. Then an effective Ham- 
iltonian is constructed allowing one to obtain the light intensity-dependence of the exciton 
density. Due to possible bi- or multistability of the density, the calculated intensity-depen- 
dent polariton dispersion relations may exhibit different anomalies, such as the splitting of 
each polariton energy branch into two or several sub-branches and the appearance of 
supplementary intracrystal polariton-like waves even in the absence of exciton spatial disper- 
sions. 

1. Introduction 

It is well known that photons and crystalline elementary excitations can mix to form 
coupledmodescalledpolaritons. One of the most significant tasks in solving the polariton 
problem is to determine their dispersion relations. Since these relations can be derived 
rigorously by solving concrete interaction Hamiltonians, they provide the most physi- 
cally satisfying basis not only for describing many optical effects, among them absorption 
(Nguyen et a1 1979), luminescence (Tait and Weiher 1969, Benoit a la Guillaume et a1 
1970), light scattering (Ovander 1962, Nguyen et a1 1980) and non-linear processes 
(Ovander 1965, Nguyen et a1 1981), and also for predicting and interpreting new optical 
phenomena, such as, e.g. the wavevector dependent absorption occurring in ‘weak level’ 
crossing situations (Hopfield and Thomas 1965, Henry 1969) or the appearance of 
supplementary intracrystal waves due to spatial dispersions of crystalline excitations 
(Agranovich and Ginsburg 1966). Over the last decade, with the use of laser techniques, 
the research into highly photo-excited systems has attracted increasing attention. Under 
intense light the photon-crystalline quasiparticle mixing occurs in a collective manner, 
i.e. not a photon and a quasiparticle as under weak light but a number of them mix to 
generate ‘collective’ polaritons which are also referred to as giant (Haken and Schenzle 
1972,1973) or non-linear (Belkin et a1 1979) polaritons. Many works have been devoted 
to the giant polariton. However, in all of these works only the dependence of the energy 
of the giant polariton on the density of crystalline quasiparticles is considered (see e.g. 
Inoue 1974, Liu 1983, Avdjugin eta1 1983, Nguyen 1988a). The density of quasiparticles, 
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in fact, serves as an internal theoretical uncontrolled parameter, which, generally, can 
possess more than one stationary solution depending sensitively upon the frequency and 
intensity of external pumping light field (Toyozawa 1978, 1979). Thus, it would be 
desirable to have the giant polariton dispersion curves depending directly on frequency 
and intensity of incident light-the true experimentally controlled parameters. This is 
precisely the aim of the present paper, where the study is restricted to the case of 
molecular crystals with Frenkel excitons, being quasiparticles to be mixed with photons. 
As will be seen, the multistability of the exciton and intracrystal photon densities could 
cause anomalies in the giant polariton dispersion. A variety of optical anomalies in 
absorption and resonance scattering under intense light has been observed in CuCl 
(Nagasawa et a1 1976, Mita and Ueta 1978) and explained by means of the above- 
mentioned population multistability (Toyozawa 1978,1979). The influence of the popu- 
lation instability on the polariton effect, however, has not been considered until now. 

We hereafter use the unit system with h = c = 1. 

2. Hamiltonians and exact commutation relations for Frenkel exciton operators 

For simplicity and definiteness, we shall consider a three-dimensional molecular crystal 
with one molecule in a unit cell and assume that each molecule has only one excited 
state. Suppose a monochromatic light beam with wavevector q, frequency w, and electric 
field strength E,  of real amplitude A, 

E,(t) = Aq(eiwd + (1) 

is incident onto a surface of the crystal. Let the beam propagating inside the crystal 
be characterised by its wavevector k .  Then, thanks to Maxwell-Frenkel boundary 
conditions and disregarding the additional boundary conditions (Pekar 1958) and the 
existence of the dead-layer near the border surface (Ting et a1 1975), one has 

w,  = q = / q (  = k / v & ,  = I k / / v & S C  = Q k  ( 2 )  
where E, is the background dielectric constant of the crystal. 

To apply the well-developed second quantisation method it is assumed that the light 
inside the crystal will be quantised, with the photon creation and annihilation operators 
denoted by c: and ck. The coupling between the external driving field (1) and the 
intracrystal photon can be described by (Steyn-Ross and Gardiner 1983) 

H e x t ( t )  = - ( 2 & , v Q k ) 1 ’ 2 A q  eiwdCk + HC (3) 

where Vis the sample volume. If the light-matter interaction occurs via excitons which 
are generated by absorbing intracrystal photons, the Hamiltonian of a system of many 
interacting excitons and photons will be of the form 

Hxy = ( Q k  + B k ) c : c k  + Q x k a : a k  + ( Q k / V ) C : C k f C k C k  f ( F k / N ) a : a @ ; a k  

+ R , ( U : C k  + C : a k )  (4) 
where a: (ak)  creates (destroys) an exciton with energy Q x k .  It is different from the low 
excitation case, in that both photon-photon (cc Q k )  and exciton-exciton ( c c F k )  collisions 
are involved in Hxy.  Bk = 2xe2N/mVQk with e and m being the charge and mass of a 
free electron respectively; Rk = (2x76N/VQk)1’2&Pk, where Pk is the photon-exciton 
transition dipole matrix element and N the total number of unit cells. Since the incident 
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light is assumed to be monochromatic and all relaxation and damping processes are 
neglected (they may be phenomenologically accounted for, say, in the work of Nguyen 
1988a), the state inside the crystal will be that of coherent photons and excitons with the 
same wavevector k.  That is the reason why the symbol & disappears in (4) and we can, 
for brevity, drop all the wavevector characters everywhere in what follows. The overall 
Hamiltonian of the problem under study, thus reads 

H = Hex,  + H,,. ( 5 )  
A very delicate matter to be emphasised is that photons are ideal bosons, but Frenkel 
excitons are not. There are different approaches to the non-bosonic nature of the exciton 
(see e.g. Agranovich 1968, Hanamura 1974). For us, that explored by Kaplan (1976) 
and Kaplan and Ruvinskii (1976) seems to be best suited to the treatment of many- 
exciton systems with arbitrary exciton density, because they have been successful in 
finding a closed and exact set of commutation relations for Frenkel exciton operators, 
although some of them are trilinear but not bilinear as usual, namely 

Now we are going to study the intensity-dependence of the dispersion relations of the 
eigenmodes of the coupled photon-exciton system subjected to excitement by the 
external light field (1). To do this we shall follow two stages: 

(i) We anticipate that the whole system is approaching its steady state with certain 
stationary exciton and photon densities corresponding to given frequency and intensity 
of exciting incident light. Then, we could forget Hex,  for the time being and handle only 
H,, to find the giant-polariton dispersion relations, which, as a rule, should contain 
exciton and photon densities as theoretical parameters (see § 3). 

(ii) We use the overall Hamiltonian H = Hex,  + H,, to determine the dependence of 
the above-mentioned theoretical parameters on the experimentally controlled par- 
ameters-the frequency and intensity of the incident light (§ 4). 

By combining the results of the two stages we shall have the desired polariton 
dispersion curves which may exhibit anomalies with respect to those of the usual linear 
polaritons (§ 5 ) .  

3. Density-dependent polariton energy 
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where (. . .) = (. . . ) H , y  means the average over the eigenstate of Hxy and O ( t )  is the step 
function. Taking into account the commutators (6)-(8) we can determine the time- 
derivatives of G,(t)  and G2(t) which are expresed in terms of G3(t),  , . . , G6(t) 

G, ( t )  = [l - 2(NX/N)]6 ( t )  - iQ,G,(t) - iRG2(t) + (i/N)(2QX - F)G3(t)  

- i(F/N)G,(t) + (2iR/N)G5(t)  (15) 

(16) G,(t) = -i(Q + B)G,(t) - iRG,(t) - (2iQ/v)G,(t)  

is the total exciton number. The specific form of the total exciton number operator f i x  
as seen from (17) is due to the non-bosonic nature of excitons (see Kaplan 1976). Now 
going to the energy representation by means of the transformation 

Gi(t)  = - G,(E)  exp(-iEt) d E  (18) 2n ‘ I  
we get from (15)-( 16) 

( E  - Q,)G,(E) = i [ l  - 2(N,/N)] + RG2(E)  + ( l / N ) ( F  - 2Q,)G3(E) 

+ (F /N)G, (E)  - 2 ( ~ / N ) G , ( E )  (19) 

(20) ( E  - Q - B)G,(E) = RG1(E) + 2(Q/V)G,(E). 

To solve (19) and (20) for G,(E)  and G,(E) we have to set up equations of motion also 
for G3(E) ,  , . . , G6(E) ,  which, in turn, will involve further new unknown functions, say, 
G,(E), G,(E), and so on. In what follows we resort to the well-known random-phase 
approximation (RPA) which formally gives us in the case of coherent excitons 

G4(E)+N,Gl(E) (21) 

G,(E)-+ N,G,(E) G 6 ( E ) +  N y G Z ( E )  (22)  

with Ny = (c+c) being the total number of internal photons. With (21) and (22 ) ,  (19) and 
(20) become 

{E  - Q,[l - (2n,/n>l - (2n,/n)F) Gl ( E )  + R[(2n,/n) - 11Gz(E) 

-RGl(E)  + ( E  - Q - B - 2Qny)G2(E) = 0 

= i[ l  - (2n,/n)] (23) 

(24)  

where the corresponding densities are n = N / V ,  n, = N,/V and ny = N,/V. From (23) 
and (24) we immediately obtain 

G l ( E )  = i ( l  - 2n,/n)(E - Q - B - 2Qn.,)/{(E - QX(1 - 2n,/n) - 2Fn,/n) 

x ( E  - Q - B - 2Qn,) - R2(1 - 2n,/n)} (25 )  

- RZ(1 - 2n,/n)}. (26)  

G,(E) = iR(1 - 2n,/n)/{(E - Q,(1 - 2n,/n) - 2Fn,/n)(E - Q - B - 2Qn,) 
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Figure 1. E , , 2  = E ,  2Q;‘ versus y = K.E;’/~Q;’. 
Curve A, px = 0; curve B, px = 0.3; curve C, pT = 
0.5; curve D, px = 0.7; curve E,  pr = 0.9. 

Obviously, G,(E)  and G2(E) possess two common poles determining the dispersion 
laws of the two energy branches of giant polaritons 

E1,2(k) = & ( [ Q x k  + ( F k  - Q X k ) P x  + k/Ek’2 + Bk + n Q k P ,  

* {[Q,& ( F k  - Qxk)Px - k/&i’2 - B k - n Q k P y I 2  

+ 4 ~ : ( i  - px)}1’2] (27) 
where the relative densities px = 2n,/n and p, = 2n,/n are introduced for convenience. 
As in other works, we have got the giant polariton dispersion relations depending on pv 
and px.  However, the expressions for derived here seem to be more general and 
correct. In all other works, for example, Q was put equal to zero, while in the work of 
Liu (1983) the multiplier of the term m4R2 was (1 - p,)* instead of (1 - p,) that should 
be incorrect (see Nguyen 1988b, c). Neglecting the k-dependence of Q x k ,  Fk, Qk, Pk and 
putting Q k  = Qx0 in Bk and Rk we can plot in figure 1 the polariton dispersion curves for 
various values of px. The data used for plotting are (Agranovich 1968) Q, -- 5 eV, n = 
1022cm-3, F -  2.5 eV, Q = 0 and /PI = 2e X cm. From figure 1 it is clear that the 
upper polariton branch E 2  shifts down and the lower one E l  rises for increasing px. 
Negative values of E l  for small y = kEi’2Q;’ are caused by the fact that antiresonant 
terms were ignored in writing Hxy .  

Before going on to the next section note that such correct expressions for El,* as in 
(27) could also be derived by a Bogolubov diagonalisation method, if instead of Hx,one 
used the following effective Hamiltonian f i x ,  

f i x ,  = Q C + C  + Q,a+a + R ( a + c  - c+a) 

fi = Q + B + nQp,  
(28) 

(29) 
fix = Q x  + ( F -  Q,)p, 

R = R(1 - p y 2 .  
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The advantage of using fixy is that in it both photon and exciton operators are ideally 
bosonic. In the work of Liu (1983) an ad hoc effective Hamiltonian Heff was constructed 
so that the correct equations of motion for operators a and c could be obtained and then 
such an Heff should be made diagonal yielding the giant polariton energy. Unfortunately, 
the Heff of Liu, being Hermitian, is not self-consistent: equation (16b) of Liu (1983) 
cannot be derived from his Heff as is required. To meet the purpose pursued in the work 
of Liu (1983) the effective Hamiltonian must be non-Hermitian as has been provided by 
Nguyen (1988~) and then the polariton dispersion curves may be drawn by a step-by- 
step Bogolubov transformation method developed by Nguyen (1988b). The effective 
Hamiltonian written in (28)  is Hermitian because here we require it to be such that the 
correct dispersion laws (27 )  (but not the equations of motion for Green functions (23) 
and (24 ) )  should be obtained. In 6 4 Hxy is used to derive the dependence of pu and px 
upon the frequency and the intensity I = 2 & A 2  of the incident light. 

4. Density multistability 

As was stated in § 2 ,  we are dealing with the coherent exciton-photon state. Let the 
averaged value over the coherent state be denoted by {(. . .))= (. . ) H ,  then according to 
Glauber (1966) and Bogolubov (1971) we have 

((a)) = N j f 2  ((c)) = Ni/2 .  (32) 

Averaged values of such a kind are termed averaging over the coherent state or quasi- 
averaging. It can be proved that if the Hamiltonian H conserves total number of 
quasiparticles, then usual averaged values {a)  ( u ) ~  exactly equal to zero. To achieve 
non-zero averaged values it is necessary to have Hamiltonians changing the total number 
of quasiparticles. In our problem, the overall Hamiltonian fi = He,, + f i x y  is exactly the 
required one with He,, as a term changing the total number of excitons and photons. To 
eliminate the explicit time-dependence in He,,, we cast fi into a rotating frame of 
reference as below 

fi = w = (6 - O ) C + C  + (6, - w)a+a + R ( a + c  + c+a)  + A(c+ + c )  (33) 

H+ fi = S+WS (34) 

S = exp[p(c+ - c) + v (a+ - a ) ]  

where A = - ( ~ E , V S ~ ) ' / ~ A .  By means of a unitary transformation 

with 

(35) . 
and real coefficients p and v defined by 

v = EA[(6 - w ) ( i i ,  - w )  - l721-1 

p = -(a, - w ) A [ ( 6  - w) (Qx  - w )  - l721-1 
(36) 

(37)  

we can get fi in the form 

OIO = (ii - w)c+c + (6* - w)a+a + R ( a + c  + c+a)  + p * ( 8  - w )  + V * ( i i ,  - w )  

+ 2pvR + 2 p A .  (38) 
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conserves the total number of quasiparticles. Now, if We see, in contrast to hl, that 
the eigenstates of W and fi are I@) and (6) = S+/@), respectively, we shall have 

N;I2 = ((a)) = ( u ) ~  = (@la]@) = (@/SS+aSS+/@) = (6>IS+aSI6)  

= (S+aS)G = (a)w + v (39) 

(40) Nil‘ = ((c)) = . . . . = ( c ) ~  + ,U. 

p, = U2QQ,R2(1 - p,) l / { [ (B + nQpy)f+ R’lp, + ( B  + nQpy)A - R2l21 
pu = U ~ Q Q , ( A  + f p , ) * m ~  + n ~ p , i f +  R Z I ~ ,  + ( B  + n ~ p , ) ~  - wn 

Since (a)w = ( c ) ~  = 0, (39) and (40) give us N ,  = v 2  and N ,  = p 2 ,  which can be rewritten 
as follows 

(41) 

(42) 
where 1 = Z(nQ,)-’, f = F - Q, and A = Q, - o. Dividing (42) by (41) we have pu 
expressed only in terms of p,, namely 

Py = px(A + f P J 2 ( 1  - Px)-’R-2. (43) 
Insert (43) into (41) and then recast the latter into the form 

which reveals that under certain conditions one value of 1 might correspond to several 
values of p, (and py through (43)), indicating the occurrence of density multistability. 
Since the photon-photon scattering is, in fact, very weak, we can henceforth put Q = 0. 
Then (44) becomes 

j= PP,(Px + ffI2(1 - p,>-’ (45) 
where 

x = FQ;’ z = BQ;’ U = 2RQ;‘ (47) 
are normalised dimensionless quantities introduced for convenience in numerical cal- 
culations. Equation (45) is a simplified form of the more general one treated in the works 
of Nguyen (1986,1988a) according to whose results density bistability would occur if the 
following inequality is met: 

-9 < 8 a  < 0. (48) 

5. Polariton dispersion anomalies 

We have shown in § 3 that polariton dispersion curves are subject to changes in their 
shapes depending on how highly the crystal is excited, i.e. depend on px and py. On 
the other hand, from 0 4 follows that px and pu, themselves, are governed by Z and U. 
Generally speaking, for fixed Z and U there may be more than one corresponding pair 
of values of p, and pu, so we can write pf = pj(Z, U), where i = 1 ,2 ,3 ,  . . . a n d j  = x or 
y. Inserting the multivalued densities pj(Z, o) into E , , , ( k ,  p i ) ,  one would get anomalous 
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Figure 3. Polariton dispersion curves for i= 0 
(broken curves) and i = 0.15 (full curves). The 
dotted lines are unstable. 

Figure4. E,,,versusifory = 0,6(fullcurve), 0.75 
(chain curve) and 0.8 (broken curve). Unstable 
states are shown as dotted curves. 

curves for the dispersion of the giant polariton which will be displayed in figures 3 and 4 
below. Figure 2 represents px as a function of 1 for various values of y .  We see that 
for y 2 y c  = 0.75 px is a monotonically increasing function of 1, while for 0 < y < y ,  the 
(1 - p,)-correspondence is one-to-three. The larger y the narrower the interval of 1 
between which density bistability takes place. In figure 3 we draw dispersion curves of 
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the polariton for a fixed Z = 0.15. For comparison, those for the unexcited case 1 = 0 are 
also plotted in it. Figure 3 shows, at least, two kinds of anomalies: (i) Each polariton 
energy branch splits into two sub-branches-the solid lines AB and CD-because the 
dotted lines BC correspond to unstable solutions of px (Toyozawa 1978). (ii) For a fixed 
i one incident light with a certain frequency o might generate inside the crystal more 
than one polariton wave of same frequency, but different refractive indices, i.e. different 
wavevectors (see figure 3 ) .  Note that the origin of the above-mentioned supplementary 
intracrystal polariton waves comes from the intensity-dependence of the polariton 
dispersion relations, but not from the spatial dispersion of excitons as it is already well- 
known (Agranovich and Ginsburg 1966). Finally, the explicit 1-dependence of the 
polariton energy is represented in figure 4 for three values of y .  For certain values of y 
(say, y = 0.6) the anomalous property may manifest itself in splitting two polariton 
branches into four sub-branches (full curves in figure 4). When l i s  increasing and then 
decreasing, the hysteresis effect of polariton energy will occur, but the hysteresis loop 
A + B + C + D + A of the upper branch goes clockwise, while that of the lower one 
goes counter-clockwise. 

6. Conclusions 

We have dealt with possible anomalies associated with the intensity-dependence of the 
energy of the giant polariton within the simplest model. We wonder could any predicted 
effects in fact be checked experimentally? If such anomalies as demonstrated in figures 
3 and 4 were responsible, they must influence all optical resonant processes under intense 
light when the photon-exciton interaction is of importance. Hopefully, this paper can 
aid experimentalists in measuring such processes. Of course, to be in possible agreement 
with observations, one has to generalise the theoretical model to account for the dephase 
and depopulation times of both internal photons and excitons as well as the spatial 
dispersion of the latter, etc. 
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